Kamis, 11 November 2010

jual suzuki katana tahun 1997

di jual cepat suzuki katana tahun 1997, kondisi mulus, warna hijau metalik, plat nomor Jakarta,harga nego hubungi kiki helmi 085723948024

Senin, 29 Maret 2010

kasus infeksi pada jantung, sama ama kasus kita skrg

This is a 12 year old boy with a 2 day history of fever, nausea, vomiting, anorexia, chills, and night sweats. During the last 24 hours, his symptoms not only worsened, but he started complaining of shortness of breath. At this time, he is brought to the Emergency Department. His past medical history is only remarkable for a small ventricular septal defect which has never bothered him before. He denies any surgical history or past hospitalizations. Family history and social history are noncontributory.

Exam: VS T 38.5, pulse 140, BP 90/45, RR 40, oxygen saturation 92% on room air. Weight and height are at the 50th %ile. He is alert, subdued and somewhat toxic in appearance. Eyes are clear (no conjunctival hemorrhages). ENT exam is normal. His neck is supple without adenopathy. Lung exam reveals tachypnea and coarse bibasilar breath sounds, but no dullness to percussion or pleuritic chest pain. Cardiac exam reveals tachycardia, and a loud, harsh, blowing, grade 3/6, holosystolic murmur, heard best over the lower left sternal border, but no frictional rubs and no gallops. His abdominal exam is normal. No rashes or ecchymoses are noted. No neurological abnormalities are noted.

Chest x-ray identifies multiple delicate nodular opacities bilaterally. A CBC shows a WBC 25,500, with 22% bands, 63% segs, 10% lymphs, and 5% monos. Hgb 14.5, Hct 44%, platelet count 300,000. ESR is elevated at 92. Chemistry panel is within normal limits. Urinalysis reveals microscopic hematuria. Two blood cultures, each more than 12 hours apart, are still pending. EKG reveals a sinus tachycardia. An echocardiogram reveals a small VSD with minimal left-to-right shunt, but no vegetations or pericardial effusion. Ventricular and valvular function are normal.

Clinical course: He is admitted to the hospital for possible endocarditis. IV antibiotics (vancomycin and gentamicin) are started. A CT of the chest reveals evidence of septic emboli in both lungs. On the second hospital day, both blood cultures grow out Staph aureus. On hospital day 3, the Staph aureus is methicillin/oxacillin sensitive, so his antibiotics are changed to oxacillin. On hospital day 8, his temperature returns to normal and by the 6th week of IV antibiotic therapy, his subsequent blood cultures are negative and he is discharged home.


Carditis (inflammatory conditions of the heart) includes myocarditis, pericarditis and endocarditis. Endocarditis includes valvular inflammation (often called valvulitis). Aortitis is sometimes included in carditis. Endocarditis may be infectious or due to rheumatic fever. Pericarditis and myocarditis are usually viral or post-viral, but they may be due to rheumatic fever as well. Autoimmune conditions may also cause carditis. Rheumatic fever and autoimmune conditions are covered in separate respective chapters.

Infective Endocarditis

Prior to the era of antibiotics, patients suffering from infective endocarditis had mortality rates of nearly 100%. However, with the introduction of antibiotics, the present day mortality rate for this disease in the pediatric population ranges between 20-30%. The present trend for this disease has the average pediatric age of onset increasing from 5 to 12 years old. Some hypothesize the reason for this is due to the current increase in survival rate of children with congenital heart disease.

It is theorized that the cause of infective endocarditis stems from the hemodynamically turbulent flow which causes endothelial thickening that provides a place for a platelet and fibrin thrombus to develop. This site becomes the nidus of bacterial growth for susceptible adhesive microorganisms. Therefore, conditions which predispose turbulent blood flow in the heart are risk factors for infective endocarditis. Such conditions include ventricular septal defects (VSD), patent ductus arteriosus (PDA), aortic valvular disease, atrioventricular septal defect (AVSD, also known as endocardial cushion defect or AV canal), prosthetic valves, tetralogy of Fallot, and chronic rheumatic heart disease. In underdeveloped countries where rheumatic heart disease is common, it is the most common cause for infective endocarditis. However, congenital heart disease is the most common risk factor in pediatric practices of the United States. The mitral valve is the most commonly affected, followed by the aortic valve, then the tricuspid valve. Other risk factors include situations which increase the risk of bacteremia, such as: IV drug use (which predisposes infective endocarditis to the right side of the heart), indwelling IV catheters, intraarterial catheters, severe burns, dental procedures, or recent cardiac surgery.

It is estimated that 80% of all pediatric infective endocarditis are due to alpha-hemolytic streptococci and S. aureus. Alpha-hemolytic streptococci (which includes strep viridans) are responsible for 75% of subacute endocarditis and S. aureus is responsible for 50-70% of acute endocarditis.

The clinical course of infective endocarditis varies from an acute to subacute course and is usually based on the offending microorganism. Traditionally, the microorganisms which are responsible for acute infective endocarditis include Staphylococcus aureus, Streptococcus pyogenes, or Neisseria gonorrhoeae. Microorganisms usually responsible for subacute infective endocarditis are the less virulent Streptococcus viridans (alpha strep). These distinctions, though useful clinically, do not always hold. Therefore, S. aureus may cause a subacute course, and S. viridans may be responsible for an acute endocarditis. In the pediatric setting, the clinical distinctions are still useful, perhaps more so than in the elderly population.

Acute infective endocarditis is characterized by a rapidly progressive clinical picture of sepsis, high fever, headaches, nausea, vomiting, diarrhea, cough, shortness of breath, and early cardiac decompensation. On the other hand, the subacute course is characterized as an insidious, flu-like syndrome, associated with malaise, anorexia, +/- fever. In the pediatric population, it is rare to find splinter hemorrhages, Osler nodes (painful, red, nodular lesions most commonly found on fingers), Janeway lesions (small, erythematous, nontender areas of the palms and soles), and Roth spots (retinal hemorrhages with central clearing). If the course is prolonged, then splenomegaly, weight loss, night sweats, anemia, or petechiae may develop. In 20% of infective endocarditis, a new cardiac murmur or change in a preexisting murmur occurs. A subacute course of infection is unusual under the age of 2 years old. Most patients with endocarditis younger than 2 will have an acute fulminating disease.

Embolic episodes may also be a part of the clinical course, however this is more common in adults than in children. Emboli originating from left-sided endocarditis may cause renal infarcts resulting in frank hematuria, splenic infarcts resulting in left flank pain, or stroke-like symptoms resulting from cerebral emboli. Emboli from right-sided endocarditis may cause chest pain and shortness of breath due to pulmonary embolism.

Several sources describe a diagnostic criteria (the Duke criteria) to allow early recognition of endocarditis, when vegetations are still too early to detect. A patient is considered to have infective endocarditis if 2 major criteria or 1 major plus 3 minor criteria are met. The major criteria are: positive blood cultures x2 and endocardial abnormalities on echocardiography. The minor criteria are: presence of a predisposing condition (i.e., valve abnormality), fever greater than 38 degrees C, embolic episode (i.e., splenic infarct), and immunologic phenomena (i.e., Osler nodes).

Blood cultures are the most valuable laboratory tests in making the diagnosis of infective endocarditis. Controversy lingers as to the exact number of cultures that should be obtained for each patient with suspected infective endocarditis. However, the collection of 2 to 3 blood cultures over a 24 hour period will suffice in most cases. Approximately 5% of patients with endocarditis will have negative blood cultures. In some cases, the microorganism contained in the vegetation are unexposed, encased in fibrin and platelets. Antibiotic therapy prior to obtaining blood cultures will reduce the likelihood of recovering the organism in the blood. Therefore, it is very important to obtain blood cultures prior to antibiotic treatment. Fungi or candida can cause endocarditis rarely, but these will eventually grow out of most blood cultures (though very slowly).

Other laboratory tests are not as helpful in making the diagnosis of infective endocarditis, but they may be helpful in monitoring clinical progress. Elevated erythrocyte sedimentation rate (ESR) is commonly found in both acute and subacute endocarditis. During antibiotic therapy, a decrease of the ESR signifies that the treatment is most likely effective. Like many other infectious diseases, a leukocytosis with an accompanying left shift may be seen, although this is more common in the acute setting than the subacute course. Microscopic or macroscopic hematuria is also a common laboratory finding. Microscopic hematuria is most likely due to immune complex depositions in the glomeruli, whereas macroscopic hematuria is most likely a result from renal embolization. If the course is chronic, such as in the subacute cases, normocytic/microcytic anemia may occur.

The most helpful diagnostic procedure is echocardiography. Echocardiography is most helpful in children with normal cardiac anatomy or with isolated valvular abnormalities. However, this procedure is not 100% sensitive or specific, therefore a negative echocardiogram does not rule out endocarditis. Recently, transesophageal echocardiography (TEE) has had better results than the transthoracic approach in adults. Although, TEE is currently used intraoperatively in children, the usefulness for this procedure in children with endocarditis remains uncertain.

The differential diagnosis for infective endocarditis is complex since this disease has variable clinical presentations. Because infective endocarditis commonly presents with fever, arthralgias, and a positive rheumatoid factor; juvenile rheumatoid arthritis, Kawasaki's disease, rheumatic fever and other connective tissue disorders should be considered in the differential diagnosis. Neurologic manifestations from infective endocarditis may also mimic that of meningitis, cerebritis, or toxic encephalopathy. If hematuria is present, one must also consider other renal diseases. If S. aureus bacteremia along with an increasing ESR is present in a patient with infective endocarditis, one must consider osteomyelitis or septic arthritis. Cardiac myxomas or rheumatic carditis must also be considered if a patient presents with a new or changing heart murmur. The diagnosis of infective endocarditis should be considered in any child with persistent unexplained fevers especially if they are considered at high risk such as history of congenital heart defects or IV drug use.

Isolation of the infecting microorganism by blood culture is extremely important, not only in making the diagnosis, but also in planning for treatment. The microorganisms that are revealed from the blood cultures will strongly determine the type of antibiotic regimen to be used. The physician must be guided by the antibiotic susceptibility pattern. Although antibiotic regimens vary depending on the infective microorganism, one general principle is true in the treatment of infective endocarditis: complete eradication of the infecting microorganism with bactericidal agents will usually require weeks of therapy. For example, patients with blood cultures that grow out Streptococci will require 4 weeks of penicillin G and patients with Staph. aureus will require 6 weeks of oxacillin (if they are methicillin/oxacillin sensitive). Initially when blood cultures are still pending, empiric antibiotics should be started. Empiric therapy includes coverage for the common, Streptococci and S. aureus, but also for the less common MRSA (methicillin resistant Staph aureus) and Gram negatives, therefore vancomycin and gentamicin are the preferred regimen.

Determination of MIC and MBC levels for the causative bacteria will assist in determining the potential for outpatient treatment with oral antibiotics (refer to the chapter on MIC and MBC levels).

Obtaining occasional blood cultures during the first 8 weeks after cessation of treatment is warranted, because most relapses occur during this period. There are several common indications for surgery. These include a significant embolic event, persistent infection, and progressive congestive heart failure especially when the aortic or mitral valve is involved.

Prophylactic antibiotics are recommended for children who are at risk to develop infective endocarditis, while undergoing procedures that may induce a bacteremia. At risk patients include those who have significant heart defects associated with turbulent blood flow (e.g., VSD, mitral valve prolapse, etc.), prosthetic conduits, or prosthetic heart valves. The recommended antibiotic regimens for prophylaxis include amoxicillin 50mg/kg PO 1 hour before the procedure or ampicillin 50mg/kg IM or IV within 30 minutes of the procedure. If the patient is allergic to penicillin, an alternate drug may include clindamycin 20 mg/kg PO 1 hour before procedure or cefazolin 25mg/kg IM or IV within 30 minutes of the procedure. In general, any dental or surgical procedure involving the respiratory, gastrointestinal, or genitourinary tract that induces bleeding from the gingival or mucosal surface, can predispose at risk patients to bacteremia. Therefore, antibiotic prophylaxis should be considered in these situations. The maintenance of optimal dental care and oral hygiene is also important for children at risk for infective endocarditis.

At present, the mortality rate is between 20 and 30%. Mortality rates are slightly higher in patients with acute staphylococcal infection, fungal infection, and prosthetic valve endocarditis. Mortality may be caused by sudden perforation of the aortic valve with severe aortic insufficiency, chordal rupture with resultant mitral insufficiency, myocardial infarction, or intramyocardial abscess formation with the development of a myocarditis.

Myocarditis

Myocarditis is defined as an inflammatory response within the myocardium. The categories of myocarditis are divided into infectious myocarditis and generalized autoimmune myocarditis. In either case, the histological features of the myocardium reveal myocardial necrosis with accompanying inflammatory reactions.

The most common cause of pediatric infectious myocarditis in the western world is viral in nature. Any virus may cause this, but the most notable viruses are coxsackie viruses, echovirus, influenza virus, mumps, and rubella. Non-viral infectious myocarditis may include protozoan infections, Lyme disease, hemolytic uremic syndrome or complications from tuberculosis. Whatever the suspecting etiological may be, the pathophysiology remains unknown. Some speculate infectious myocarditis may result from toxins secondary to the infectious agent, others speculate the mechanism is secondary to an immune reaction.

The clinical manifestations of this disease, varies from the more common subacute course to the severe course which manifests as heart failure that may be accompanied by arrhythmias. There is no single characteristic profile for infectious myocarditis. A nonspecific systemic viral infection is usually followed by a latent period. The latent period is followed by variable nonspecific signs and symptoms such as fever, diarrhea, anorexia, pallor, mild jaundice, or lethargy. Diminished heart tones may be the only clinical clue pointing toward myocarditis. If the disease progresses, cardiac enlargement may ensue, along with a nonspecific cardiac arrhythmia. The end result may eventually lead to symptoms of heart failure, such as tachypnea, dyspnea, and fatigue.

Much like the clinical manifestations, results from laboratory and investigational tests are often variable. Erythrocyte sedimentation rate, white blood cell count, and cardiac enzymes tend to vary from elevated to normal, depending on the severity of the disease. Chest radiographs may show an enlarged heart and depending on the severity of the heart failure, pulmonary venous congestion may be present. Electrocardiographic (EKG) abnormalities are common, but only nonspecific findings are present in infectious myocarditis. Often, a sinus tachycardia is present, with lowering of the QRS complexes in the standard leads and/or precordial leads. The T-waves may be flattened or inverted with changes in the ST segment. Echocardiography may reveal a nonspecific dilation of the heart chambers, most commonly the left ventricle. The left atrium may be enlarged if mitral insufficiency is present. The main importance of an echocardiogram is to exclude a pericardial effusion and to assess myocardial contractility. In addition to the echocardiogram, radionuclide angiography has been used to perform serial measurements of the left ventricular function. Controversy remains on routine endomyocardial biopsies for suspected myocarditis because the pathology is often patchy, therefore a negative biopsy cannot exclude the diagnosis. Essentially, the diagnosis of infectious myocarditis is a diagnosis of exclusion.

The treatment of myocarditis most often focuses on the treatment of arrhythmias and congestive heart failure. If an infectious agent is identified, then the appropriate therapy should be instituted, however in most cases no infectious agent will be found. Treatment of the heart failure consists of bedrest, oxygen, and congestive heart failure treatment (e.g., inotropes, diuretics and ACE inhibitors). Digoxin is controversial since this drug may induce ventricular arrhythmias. Other controversial and unproven treatment therapies include drugs that decrease the inflammatory response such as corticosteroids, immunosuppressive agents, and high-dose IV immunoglobulins.

The prognosis of the subacute course of myocarditis is good. Most patients will recover in several weeks to months with the heart size reverting back to normal within a year. However, in cases where heart failure recurs, the prognosis is poor.

Generalized autoimmune myocarditis is often one aspect of a syndrome secondary to a collagen or connective tissue disease. Autoimmune myocarditis is found infrequently in children. The more common cardiac finding in SLE is pericarditis.

Pericarditis

Pericarditis is defined as an inflammatory reaction of the pericardium. Etiologies include acute bacterial pericarditis, acute viral pericarditis, postpericardiotomy syndrome, acute rheumatic fever and uremia. Echocardiography is the most important diagnostic test, which will reveal the presence of a pericardial effusion surrounding the heart. Moderate pericardial effusion secondary to pericarditis may also show up on x-ray as an enlarged cardiac silhouette but the x-ray will not be able to distinguish pericardial effusion from myocardial dilation. In borderline cases, comparisons of previous x-rays may prove helpful. Electrocardiography (EKG) may be useful in the initial stage of the disease, when ST segments are elevated in all leads except V1 and aVR. After a few hours to days, the ST segments may return to baseline, and the T waves become flat. A low voltage (low amplitude) EKG may be seen if the pericardial effusion is large enough.

Much like infective endocarditis, the incidence of acute bacterial pericarditis has dramatically declined since the development of antibiotics. The most common settings for acute bacterial pericarditis include septicemia or hematogenous or direct spread into the pericardium from another site, such as with pyelonephritis, osteomyelitis, tonsillitis, bacterial pneumonia and empyema. The common microorganisms responsible for most acute bacterial pericarditis are Haemophilus influenzae type B, Staphylococcus aureus, pneumococcus, meningococcus, streptococcus species and tuberculosis infection. Patients with acute bacterial pericarditis will usually manifest with acute onset of chest pain, high fever, tachycardia, frictional rub, tachypnea and toxemia. Acute bacterial pericarditis often is associated with an infection elsewhere, therefore an intensive search for the primary source is essential. Blood cultures are important and it is recommended that three to five sets should be obtained in the first 1 or 2 days after admission. These blood cultures are positive 40-80% of the time and the appropriate antimicrobial agent given for 4 to 6 weeks should be chosen based on the susceptibility testing. Acid-fast stains for tuberculosis of the sputum, gastric contents, or urine are considered if blood cultures come back negative.

Acute viral pericarditis is often associated with the aforementioned viral myocarditis. And like the viral myocarditis, the most common viral agents responsible for viral pericarditis include group B coxsackie virus, echovirus, adenovirus, and influenza virus. The clinical manifestations of the viral myocarditis usually dominate over the clinical manifestations of the viral pericarditis. The typical signs and symptoms of acute viral pericarditis include a low-grade temperature, chest pain, and a frictional rub. The therapy for acute viral pericarditis is symptomatic. This includes bedrest, in particular patients who also have myocarditis. The prognosis of viral pericarditis is good and often self-limiting, with complete recovery in 3 to 4 weeks.

Similar to the adult pericarditis following a myocardial infarction, known as Dressler's syndrome, an episode of acute pericarditis in children following cardiac surgery which includes opening of the pericardium (post-pericardiotomy syndrome). The pathogenesis is unclear, however anti-myocardial antibodies and eosinophilia point toward an autoimmune etiology. Cardiac tamponade may occur, which may be treated with a pericardiocentesis, however in most cases of post-pericardiotomy syndrome, the disease is self-limiting in 2 to 3 weeks. The most important treatment is bedrest. Salicylates may be used to lower the temperatures and chest pain. In the severely ill child, a course of prednisolone may be effective.


Questions

1. What is the most common microorganism found in pediatric infective endocarditis?
. . . . . a. Staph aureus.
. . . . . b. Strep viridans
. . . . . c. E. coli
. . . . . d. Pneumococci
. . . . . e. Strep pyogenes

2. What is the preferred antibiotic treatment for the microorganism in question 1?
. . . . . a. Penicillin G x 2 weeks
. . . . . b. Penicillin G x 4 weeks
. . . . . c. Oxacillin x 6 weeks

3. Which microorganism(s) will most likely NOT manifest as an acute infective endocarditis in the pediatric setting?
. . . . . a. S. aureus
. . . . . b. Neisseria
. . . . . c. Strep. pyogenes
. . . . . d. HACEK (Haemophilus species (H. parainfluenzae, H. aphrophilus, and H. paraphrophilus), Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella species).

4. Does the pediatric case presented at the beginning of this chapter meet the Duke Criteria for Diagnosis of infective endocarditis?
. . . . . a. Yes.
. . . . . b. No.
. . . . . c. Need more information.

5. What type of prophylactic antibiotic against infective endocarditis would you prescribe to a nine-year old female, with a past medical history only remarkable for an allergic reaction to penicillin, scheduled for a tooth extraction the next day?
. . . . . a. Amoxicillin.
. . . . . b. Ampicillin.
. . . . . c. Clindamycin.
. . . . . d. Cefazolin.
. . . . . e. None.

6. What is the most common microorganism that causes pediatric infectious myocarditis in the United States?
. . . . . a. Strep viridans.
. . . . . b. Tuberculosis.
. . . . . c. Staph aureus.
. . . . . d. E. coli.
. . . . . e. Virus.

7. Which of the following answer is the most severe clinical manifestation commonly found in pediatric myocarditis?
. . . . . a. Myocardial infarction.
. . . . . b. Heart failure.
. . . . . c. Pericarditis.
. . . . . d. SLE.
. . . . . e. None of the above.

8. Which is the most helpful test to diagnose pericarditis?
. . . . . a. Cardiac enzymes.
. . . . . b. EKG.
. . . . . c. Echocardiogram.
. . . . . d. X-ray of the heart silhouette.
. . . . . e. Answers b and d.

9. Which of the following is/are treatments options for pediatric postpericardiotomy syndrome?
. . . . . a. Salicylates.
. . . . . b. Pericardiocentesis.
. . . . . c. Bed rest.
. . . . . d. Prednisolone.
. . . . . e. All of the above.


References

1. Shinebourne EA. Chapter 66 - Infective Endocarditis. In: Anderson RH, Baker, EJ, Maccartney FJ, et al (eds). Paediatric Cardiology, 2nd edition. 2002, Churchill Livingstone, pp. 1759-1776.

2. Friedman RA, Starke JR. Chapter 78 - Infective Endocarditis. In: Garson A, Bricker JT, Fisher DJ, Neish SR (eds). The Science and Practice of Pediatric Cardiology, 2nd edition. 1998, Baltimore: Williams and Wilkins, pp. 1759-1775.

3. Dajani AS, Taubert KA. Chapter 65 - Infective Endocarditis. In: Allen HD, Gutgesell HP, Clark EB, Driscoll DJ (eds). Heart Disease in Infants, Children, and Adolescents, 6th edition. 2001, Baltimore: Lippincott Williams and Wilkins, pp. 1297-1308.

4. Danilowicz D. Infective Endocarditis. Pediatr Rev 1995;16(4):148-154.

5. Baker E. Chapter 63 - Non-rheumatic Inflammatory Heart Disease. In: Anderson RH, Baker EJ, Maccartney FJ, et al (eds). Paediatric Cardiology, 2nd edition. 2002, Churchill Livingstone, pp. 1699-1711.


Answers to questions

1. b.

2. b. Choice a is too short of a course and choice c is the preferred treatment for S. aureus infective endocarditis.

3. d.

4. a. The patient had positive blood cultures (1 major), and (3 minors) fever greater than 38 degrees C, a predisposing structural cardiovascular lesion (VSD), and evidence of an immunologic phenomenon (microscopic hematuria).

5. e. No antibiotics are needed, because this particular patient has no risk factors for infective endocarditis.

6. e.

7. b. Although c may be associated with viral myocarditis, viral pericarditis is most likely self-limiting.

8. c. Answers b and d may not show any abnormal findings.

9. e.

Senin, 01 Maret 2010

Wisudawan Termuda UGM, Riana Helmi: Umur Tiga Tahun Sudah Bisa Membaca


Saat Rektor UGM, Prof. Ir. Sudjarwadi, M.Eng., Ph.D.,
menyebutkan nama salah seorang wisudawan dan memintanya untuk berdiri,
sontak para wisudawan dan orang tua mencari sosok yang dimaksud.
Maklum, badannya relatif kecil dibandingkan dengan rekan-rekannya.
Walau sudah berdiri dan berada di barisan kursi paling depan, seluruh
pengunjung tetap penasaran melihat wajahnya.



Wisudawan Termuda UGM, Riana Helmi



Dialah Riana Helmi, wisudawan yang dimaksud Rektor. Dalam Wisuda
Sarjana dan Diploma UGM Periode III yang dilaksanakan di Grha Sabha
Pramana, Selasa (19/5), Riana dinobatkan menjadi wisudawan termuda. Di
usia 17 tahun 11 bulan, ia berhak menyandang gelar Sarjana Kedokteran.


Diakui oleh anak pertama
pasangan Helmi dan Rofiah ini, dirinya diterima menjadi mahasiswa UGM
saat masih berumur 14 tahun, yakni pada 1 September 2005 dan berhasil
lulus pada 25 Februari 2009 dengan IPK 3,67. Dengan demikian, jika
dihitung, Riana lulus dalam waktu tiga tahun enam bulan.


Ditemui setelah acara wisuda,
dengan ditemani kedua orang tua dan salah satu adik kandungnya, Riana
mengaku senang dengan kelulusannya. “Ya, Alhamdulillah,” ucap perempuan
kelahiran Banda Aceh, 22 Maret 1991 ini singkat.



Riana mengaku dirinya tidak banyak menghadapi kendala dalam menyesuaikan diri selama kuliah di Fakultas Kedokteran. Bahkan, ia juga banyak mengerjakan tugas seperti mahasiswa lainnya.



Kesulitan sih ada. Ya, semua bisa diatasi, kalau di Kedokteran
tugasnya banyak,” kata Riana yang masuk UGM lewat jalur PBS tahun 2005.


Seperti pengakuan ayahnya,
Helmi, selama duduk di bangku SMP dan SMA, anaknya mengikuti program
akselerasi. Sebelumnya, Riana masuk sekolah dasar pada usia 4 tahun.


Sejak umur 3 tahun, Riana
sudah bisa membaca. Saat itu kita disuruh belikan buku-buku untuk
belajar. Meski kita ngantuk sekalipun, kita dipaksa untuk
mengajarinya,kata Helmi.


Salah satu sifat Riana sejak
kecil yang selalu diingat Helmi adalah tidak suka boneka. Riana lebih
suka menghabiskan waktu bermainnya dengan belajar. “Setelah sekolah,
maunya mainnya juga belajar dan takut sama boneka. Jadi nggak pernah
main boneka, kalau lihat boneka di mana-mana ia langsung menjerit,”
kata Helmi yang berprofesi sebagai dosen perwira Polri di Sukabumi,
Jawa Barat.


Selain itu, kata Helmi, Riana
sejak kecil menganggap sekolah sebagai tempat bermain sehingga ketika
diantar ke sekolah dan belajar, ia betul-betul menikmati prosesnya
dengan gembira.


Sekolah dianggap bermain.
Setiap pergi sekolah ia selalu gembira Saat turun dari motor, ia
langsung berlari gembira, senang saat sekolah dan selalu datang lebih
pagi, kenang Helmi.


Meski telah lulus dalam usia
muda, Riana memiliki keinginan untuk melanjutkan studinya dan
bercita-cita untuk menjadi dokter spesialis kandungan. Semoga berhasil,
ya Dik!
Website Susanto : http://santo.web.ugm.ac.id
Versi Online : http://santo.web.ugm.ac.id/?pilih=news&aksi=lihat&id=120

Selasa, 23 Februari 2010

STEVENS-JOHNSON SYNDROME DAN TOXIC EPIDERMAL NECROLYSIS

v Differential diagnosis

- Ketidak terlibatnya mucous membrane atau membatasi terhadap single site harus selalu meningkatkan sebuah alternative diagnosis : staphylococcal scalded skin pada infants, purpura fulminans pada children dan pada young adult, acute generalized exanthematous pustulosis, thermal burns, phototoxicity, atau pressure blister pada adult.

- Linear immunoglobulin A bullous disease and paraneoplastic pemphigus hadir dengan dengan lless acute progression

- Pathological finding dan positive result pada direct immunofluorescence testing merupakan penting dalam mendiagnosis.

- Kasus awal EN sering diawali didiagnosis sebagai varicella.

- Kecepatan progressive dari skin lesion dan severity dari keterlibatan mucous membrane meningkatkan kemungknan terjadi dari EN

- Dalam semua aspek,termasuk pathology, generalized bullous fixed drug eruption(GBFDE) mirip dengan EN. Memiliki kesamaan dalam mekanisme yang berkaitan dengan drug. Perbedaan nya GBFDE memiliki prognosis yang lebih bagus, itu mungkin disebabkan ringannya keterlibatan dari mucous membrane dan absennya visceral complication. juga rapid onset setelah drugs intake dan well-demarcated blister merupakan ciri lain dari GBFDE

- Thermal burns atau scalding kadang-kadang menjadi sebuah persoalan ketika kehilangan kesadaran sementara terjadi.

- Destruksi dari ephithelial oleh toxin, disebabkan oleh kontak dengan fumigant atau memakan (colchine poisoning, methotrexate overdose) mungkin jg secara clinical features sama dengan EN.

- Dilaporkan SJS banyak terjadi. Biasaanya timbul kebingungan antara desquamation dan detachment dari epidermis dan juga antara mucous membrane dan periorificial skin.

- Pasien dengan desquamative rash dan scaly lips kadang-kadang didiagnosis sebagai SJS

v COMPLICATION

- Selama fase akut, paling sering complikasi yang terjadi adalah dari EN adalah sepsis

- Hilangnya epithelial merupakan awal dari bacterial atau fungal infection yang menyebabkan mortality.

- Multisystem organ failure dan pulmonary complication diobservasi dilebih dari 30% dan 15%.

- Late ophthalmic complication terlihat pada 20-75 % dari pasien dengan EN.

- Late ophthalmic complication disebabkan oleh perubahan fungsi dari conjunctival epithelium yang mengering dan abnormal dari lacrimal film.

- Hypopigmentation dan atau hyperpigmentation sering terobserve tapi jarang dikaitkan dengan hypertropic atau atau atropic scar.

- Nail changes, meliputi pergantian pigmentasi dari nail bed, ridging, dystrophic nails, dan permanent anoncychia, terjadi lebih dari 50% kasus.

- Vulvar dan vaginal komplikasi juga bisa terjadi pada pasien EN. Seperti dyspareunia, vaginal dryness, iching, pain, dan bleeding.

- Karena sering terjadi komplikasi yang lambat dan berkembang secara insidious sehingga pasien EN harus d follow up beberapa minggu stelah keluar dari rumah sakit, begitu juga pemeriksaan oleh ophthalmologist.

v PROGNOSIS DAN CLINICAL COURSE

- detachment epidermal berkembang dari 5-7 minggu.

- Kemudian, pasien masuk k fase plateau yang berhubungan dengan progressive re-epithelialization. Fase ini akan mengambil beberapa hari atau minggu bergantung dari keparahan penyakit dan kondisi umum dari pasien.

- Selama fase ini, komplikasi yang dapat membahayakan jiwa seperti sepsis atau systemic organ failure mungkin terjadi.

- Prognosis tidak dipengaruhi oleh tipe atau dosis dari obat yg bertanggung jawab atau adanya HIV.

v TREATMENT

- EN adalah penyakit yang mengancam jiwa yang membutuhkan manajement yang optimal: pengenalan yang awal, penghentian pemakain obat dan supportif caredi rumah sakit.

- Untuk yang penyebabnya membingungkan sesegera mungkin untuk menghentikan semua penggunaan obat yang pernahdiberikan dalam 8 minggu sebelumnya.

Ø Symptomatic treatment

- Hanya pasien yang memiliki limited skin involvement dan memiliki SCORTEN score 0-1 dapat di treatment dengan non-speciaized wards. Yang lainnya harus segera dikirim ke ICU atau burn centers.

- Supportive care berisi pemeliharaan keseimbangan hemodynamic dan mencegah komplikasi life-threatening. Maksud dari ini sama dasarnya pada pasien burn.

- Fluid replacement harus sesegera mungkin diberikan dan diukur pemberiaan setiap hari.

- Peripheral venous lines jika memungkin lebih dipilih karena tempat insersi dari central line sering mengalami detachment epidermis dan mudah terkena infeksi.

- Suhu lingkungan harus dinaikan 280C- 300C. dan menggunakan air-fluidized bed meningkatkan kenyamanan pasien.

- Batuan Nutrisi awal diberikan lewat naogastric tube untuk memicu healing dan penurunan resiko terjadinya bacterial translocation dari GI tract.

- Skin, blood, dan specimen urin harus dicultur untuk mendeteksi awal jikan terjadi infeksi bakteri atau fungi.

- Prophylactic antibiotic tidak diberikan, antibiotic diberikan ketika diduga pasien mengalami infesi.

- Mata harus diperiksa oleh ophthalmologist. Artificial tears, antibiotic atau antiseptic eyedrop dan vitamin A sering diberikan ppada 2 jam fase akut. Dan mulut juga seing diberikan anti septic dan antifungal solution.

Ø Specific Treatment

- Karena pada psien ini terjdi mekanisme immunologic dan cytotoxic, sejumlah immunosuppressive dan atau anti-inflammatory therapy diberikan pada pasien ini.

· Corticosteroid

Menggunakan sistemik corticosteroid masih controversial, beberapa study mengatakan terapi ini dapat mencegah selama fase awal, tetapi study lain mengatakan steroid tidak dapat menghentikan progress dari penyakit dan juga mengatakan bahwa dapat meningkatkan mortality juga adverse effect nya.

Selanjutnya banyak kasus yang diberikan cotikosteroid malah meningkatkan resiko dari EN sehingga systemic corticosteroid tidak direkomendasikan untuk pasien penderita EN.

· Intravenous immunoglobulin

Dalam sebagian study disebutkan bahwa intravenous immunoglobulin memiliki benefit tapi ini tidak menjadi standar dari pengobatan namun hanya precaution untuk menghindari terjadinya potential nephrotoxic.

· Cyclosporine A

Merupakan suatu powerfull immunosuppressive agent.

· Plasmapheresis or hemodialysis

Digunakan untuk membuang medication yang bertanggung jawab, metabolit, atau mediator inflamasi seperti cytokines. Tp pengobatan ini tidak direkomendasikan karena menimbulkan pada intravascular catheters.

· Anti-tumor necrosis factor agents

Anti-TNF monoclonal antibodies terbukti sukses digunakan untuk pengobatan untuk beberapa pasien.

v PREVENTION

- Test allergy drug in vitro

- Membawa medication allergy card

Senin, 22 Februari 2010

ANTIHISTAMIN

v PENDAHULUAN

- Efek histamin dilepaskan dalam tubuh dapat dikurangi dengan beberapa cara. Antagonis fisiologis, terutama epinefrin, memiliki tindakan yang berlawanan dengan yang histamine pada otot polos, tetapi mereka bertindak pada reseptor yang berbeda. Hal ini penting secara klinis karena suntikan epinefrin dapat menyelamatkan nyawa dalam anafilaksis sistemik dan dalam kondisi lain yang pelepasan besar dari histamin dan mediator lainnya terjadi .

- Release inhibitor mengurangi degranulation dari mast sel yang memicu kekebalan antigen-IgE oleh interaksi. Kromolin dan nedocromil tampaknya memiliki efek ini dan digunakan dalam perawatan asma, meski mekanisme molekuler yang mendasari tindakan mereka saat ini tidak diketahui. Beta2-adrenoceptor agonis juga muncul mampu mengurangi pelepasan histamine

- Selama lebih dari 60 tahun, telah tersedia senyawa yang kompetitif menentang banyak action histamin pada otot polos. Namun, tidak sampai H2-reseptor antagonis burimamide dikenalkan pada tahun 1972 adalah mungkin untuk melawan asam lambung yang dirangsang histamin. Pengembangan selektif reseptor H2-antagonis telah menyebabkan lebih efektif terapi untuk peptic disease). Selektif antagonis H3 dan H4 belum tersedia untuk penggunaan klinis. Namun, ampuh dan selektif eksperimental H3-reseptor antagonis, thioperamide dan clobenpropit, telah disusun.

- senyawa yang kompetitif dengan histamin pada reseptor H1 telah digunakan dalam perawatan kondisi alergi selama bertahun-tahun, dan banyak H1 antagonis yang saat ini dipasarkan di Amerika Serikat. Banyak yang tersedia tanpa resep, baik sendiri maupun dalam kombinasi rumusan seperti "cold pila" dan sleep aids

v BASIC PHARMACOLOGY OF H1-RECEPTOR ANTAGONISTS

Ø Chemistry & Pharmacokinetics

- The H1 antagonis dibagi menjadi generasi pertama dan generasi kedua. Kelompok ini dibedakan oleh efek obat penenang yang relatif kuat dari sebagian besar generasi pertama

- Generasi pertama juga lebih mungkin untuk memblokir reseptor otonom.

- generasi kedua H1 bloker Yang relatif sedikit menenangkan disebabkan sebagian distribusi yang kurang lengkap ke dalam sistem saraf pusat

- Agen ini dengan cepat diserap oral berikut, dengan puncak konsentrasi darah yang terjadi dalam 1-2 jam. Mereka didistribusikan secara luas ke seluruh tubuh, dan obat generasi pertama memasuki sistem saraf pusat dengan mudah

- Beberapa dimetabolisme secara luas, terutama oleh sistem microsomal dalam hati. Beberapa generasi kedua agen yang dimetabolisme oleh sistem CYP3A4 dan dengan demikian jika berinteraksi dengan obat lain (seperti ketoconazole) menghambat subtipe dari P450 ini enzim.

- . Sebagian besar obat mempunyai durasi yang efektif aksi 4-6 jam setelah dosis tunggal, tetapi meclizine dan beberapa agen generasi kedua lebih panjang-akting, dengan durasi kerja dari 12-24 jam.

- . Agen yang lebih baru kurang larut lipid dari obat generasi pertama dan merupakan substrat dari P-glikoprotein transporter dalam darah-otak terhalang sebagai akibatnya mereka memasuki sistem saraf pusat dengan susah payah atau tidak sama sekali.

Ø Pharmacodynamics

- A. blokade reseptor histamin -
Antagonis reseptor H1-blok tindakan reversibel kompetitif histamin oleh antagonisme pada reseptor H1.
Mereka memiliki potensi dapat diabaikan pada reseptor H2 dan sedikit pada reseptor H3. Sebagai contoh, histamin-induced bronchiolar atau kontraksi otot polos gastrointestinal dapat sepenuhnya diblokir oleh agen ini, tetapi efek terhadap sekresi asam lambung dan hati yang tidak termodifikasi.

- B. Tindakan tidak disebabkan oleh blokade reseptor histamin
Generasi pertama H1-reseptor antagonis memiliki banyak tindakan untuk blokade action histamin. Banyaknya tindakan ini mungkin hasil dari kesamaan struktur umum. untuk struktur obat yang memiliki efek pada muscarinic cholinoceptor, α adrenoceptor, serotonin, dan reseptor anestesi lokal. Sebagian dari tindakan ini adalah nilai terapeutik dan beberapa yang tidak diinginkan.

1. Sedasi-efek :secara umum generasi pertama H1 antagonis adalah obat penenang, tetapi intensitas efek ini bervariasi antara subkelompok kimia dan di antara para pasien.

2. Antinausea and antiemetic actions : Beberapa generasi pertama H1 antagonis mempunyai aktivitas signifikan dalam mencegah mabuk perjalanan. Mereka kurang efektif terhadap sebuah episode mabuk sudah ada

3. Antiparkinsonism efek- : Sebagian dari antagonis H1, terutama diphenhydramine, memiliki efek penekan akut pada gejala ekstrapiramidal yang terkait dengan obat-obatan antipsikotik tertentu.

4. Anestesi lokal - : Beberapa generasi pertama H1 antagonis yang kuat anestesi lokal. Mereka blok saluran natrium dalam excitable membranes dengan cara yang sama seperti procaine dan lidokain. Diphenhydramine dan Prometazin sebenarnya lebih kuat daripada procaine sebagai anestesi lokal. Mereka kadang-kadang digunakan untuk menghasilkan anestesi lokal pada pasien alergi terhadap obat bius lokal konvensional.

5. Action lain - : antagonis H1 tertentu, misalnya, cetirizine, sel mast menghambat pelepasan histamin dan beberapa mediator peradangan lainnya. Tindakan ini bukan disebabkan oleh reseptor H1-blokade. Mekanisme ini tidak mengerti, tetapi dapat memainkan peran dalam efek menguntungkan dari obat ini dalam pengobatan alergi seperti rhinitis. Beberapa antagonis H1 (misalnya, terfenadine, acrivastine) telah terbukti menghambat P-glikoprotein transporter ditemukan di sel-sel kanker, epitel usus, dan kapiler otak. Arti penting dari efek ini tidak diketahui

v CLINICAL PHARMACOLOGY OF H1-RECEPTOR ANTAGONISTS

Ø Clinical Uses

1. ALLERGIC REACTIONS

- H1 antihistaminic yang sering kali pertama yang digunakan untuk mencegah atau mengobati gejala-gejala reaksi alergi. Pada rhinitis alergi dan urticaria, di mana histamin adalah mediator utama, yang H1 antagonis adalah obat pilihan dan sering cukup efektif. Namun, dalam bronkial asma, yang melibatkan beberapa mediator, yang sebagian besar antagonis H1 tidak efektif.

- Angioedema mungkin akan dipicu oleh pelepasan histamin tetapi tampaknya dipertahankan oleh kinins peptida yang tidak terpengaruh oleh antihistaminic agen.

- Untuk atopic dermatitis, obat antihistaminic seperti diphenhydramine digunakan sebagian besar untuk efek samping obat penenang mereka, yang mengurangi kesadaran gatal.

- H1 antihistamin yang digunakan untuk merawat kondisi alergi seperti demam biasanya dipilih dengan tujuan untuk meminimalkan efek obat penenang; di Amerika Serikat, obat-obatan di terluas digunakan adalah alkylamines dan nonsedating generasi kedua agen. Namun, efek obat penenang dan kemanjuran terapi agen yang berbeda sangat bervariasi di antara individu. Selain itu, efektivitas klinis satu kelompok dapat berkurang dengan terus menggunakan, dan beralih ke kelompok lain dapat mengembalikan efektivitas obat untuk alasan yang belum dijelaskan

2. MOTION SICKNESS AND VESTIBULAR DISTURBANCES

- Scopolamine dan generasi pertama tertentu antagonis H1 adalah agen yang paling efektif yang tersedia untuk mencegah mabuk perjalanan. The antihistaminic dengan efektivitas yang paling besar dalam aplikasi ini adalah diphenhydramine dan Prometazin.Dimenhydrinate, yang dipromosikan hampir secara eksklusif untuk pengobatan mabuk perjalanan, adalah garam dari diphenhydramine. The piperazines (cyclizine dan meclizine) juga mempunyai kegiatan yang signifikan dalam mencegah mabuk perjalanan dan kurang menenangkan dari diphenhydramine di kebanyakan pasien. Dosis adalah sama dengan yang dianjurkan untuk gangguan alergi. Baik scopolamine dan antagonis H1 lebih efektif dalam mencegah mabuk perjalanan ketika dikombinasikan dengan efedrin atau amphetamine.

3. NAUSEA AND VOMITING OF PREGNANCY

Beberapa obat H1-antagonis telah dipelajari untuk kemungkinan penggunaan dalam memperlakukan "morning sickness." Piperazine derivatif yang ditarik dari penggunaan tersebut ketika sudah menunjukkan bahwa mereka memiliki efek teratogenic pada hewan pengerat.Doxylamine, sebuah ethanolamine H1 antagonis, dipromosikan untuk aplikasi ini sebagai komponen Bendectin, resep obat yang juga berisi pyridoxine. Teratogenic Kemungkinan efek doxylamine dipublikasikan secara luas di pers berbaring setelah tahun 1978 sebagai akibat dari beberapa laporan kasus malformasi janin berhubungan dengan ibu menelan Bendectin. Namun, beberapa studi prospektif besar yang melibatkan lebih dari 60.000 kehamilan, yang melibatkan lebih dari 3000 ibu yang minum Bendectin diungkapkan tidak ada peningkatan kejadian cacat lahir. Namun, karena kontroversi yang terus-menerus, merugikan publisitas, dan tuntutan hukum, Bendectin produsen menarik produk dari pasar.